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Artificial intelligence, or Al, is now a prominent part of the discourse on the future of space mission
design and operations. Although the use of Al in space systems is not new, its influence is growing as Al
technologies evolve and are integrated across more phases of the space mission lifecycle and in new
applications. This paper defines Al terminology and underlying technologies as applicable to the space
community, clarifies the distinction between Al and autonomy, and provides examples of missions and
applications where Al is already having an impact across the space enterprise. The paper finds that this
impact is uneven, and Al is likely to have the greatest effect in areas that involve analyzing large amounts
of complex data. Maintaining U.S. leadership in space will depend more on how Al technologies are
adopted and integrated than on the underlying Al technology itself.

Introduction

The use of artificial intelligence (Al) in space has emerged
as a growing area of focus for policymakers and scholars
in recent years. Al has been described as “critical” and
“transformative” for many space applications (e.g.,
exploration, remote sensing, and space traffic
management), and United States Space Force officials
have indicated that the service is seeking to incorporate Al
into its daily operations. ! ? The vast potential of Al has
spurred bold pronouncements about the future, with
headlines and strategy documents describing Al as key to
unlocking the space economy and to determining space
dominance. * *

Despite this attention, there is considerable confusion
about the use of Al in space, even around basic questions
of what it means, how it differs from existing
technologies, and how it will affect space capabilities and

missions. For example, technologies that enable
automation and autonomy in space are sometimes
misconstrued as being “Al-driven,” despite representing
distinct concepts. ©* 3 The term is also overly broad
because it encompasses a range of capabilities that differ
in both type and complexity, from discrete tasks to layered
decisionmaking. Amid this confusion, private companies
are designing and marketing their products around Al
capabilities or capabilities with Al components but
without clear definitions or distinctions to compare the
enhanced value or utility the addition of these capabilities
presumes.

Al can enable autonomy. We discuss this further in the Emerging
Opportunities for Space section, pointing out where Al is used or if
autonomy would be a more accurate characterization of the current
state of technology for a certain space application.
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To give policymakers a clear foundation from which to
evaluate and decide the appropriate role for Al in space,
this paper first presents a practical lexicon of Al terms and
technologies. Following that is a discussion of existing
and emerging opportunities for application of Al
technologies in critical space mission areas to address
important space challenges. Where possible, an
explanation is provided that defines the specific Al
technology that is being used in a specific area. Finally,
the conclusion offers some broad guidance for
policymakers to navigate the confluence of space and Al.

A Practical Taxonomy for Al

The recent increased attention and focus on Generative Al
(GenAl) applications such as ChatGPT and DeepSeek
have led to the term artificial intelligence being applied
broadly and loosely to include everything from web search
and social media algorithms to hypothetical computational
“singularities” that might bring about machines that
surpass human intelligence. ¢ Just as cognitive scientists,
biologists, philosophers, and information technologists all
have different definitions for the word infelligence, the
definition of Al varies as well.

A useful definition is found in 15 U.S. Code 9401(3):
“[Al is] a machine-based system that can, for a given set
of human-defined objectives, make predictions,
recommendations, or decisions influencing real or virtual
environments. Artificial intelligence systems use machine-
and human-based inputs to perceive real and virtual
environments; abstract such perceptions into models
through analysis in an automated manner; and use model
inference to formulate options for information or action.”’
Similarly, the Organization for Economic Cooperation and
Development (OECD) defines not Al itself but an “Al
system.” The outputs described are similar to those in the
U.S. code, but the OECD emphasizes that “different Al
systems vary in their levels of autonomy and adaptiveness
after deployment.”®

Al technologies vary in complexity. Some are often
described as narrow or weak, able to perform only one
task well; general or AGI (artificial general intelligence)
technologies are able to do many different tasks (on par
with human intelligence); and super or ASI (artificial super
intelligence) technologies reflect superhuman intelligence
across many disciplines. A useful framework for
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comparing the relative capabilities of Al systems is given
by Morris, et al. of Google DeepMind (see Figure 1),
blending elements of narrow, general, and ASI to describe
an Al system’s capability relative to a human’s. ° Note that
in these contexts, intelligence refers to the ability to reason

and make conclusions based on disparate data inputs.
There is ongoing debate within the community whether
any of the current technologies will lead to sentience—i.e.,
self-awareness or cognition—which is often portrayed in

science fiction. '°

Narrow General
Clearly scoped task or set Wide range of tasks, including
of tasks learning new skills
Level 0: No Al Marrow Non-Al General Non-Al
Caleulator software; Human-in-the-loop computing.
compiler e.g. Amazen Mechanical Turk
Level 1: Emerging Al Emerging Narrow Al Emerging AGI
Equal to or somewhat Sirnple rule-based ChatGPT, Liama 2, Gemint
better than an unskifled systems
human
Level 2: Competent Al Competent Narrow Al Competent AGI
At least S0th percentile Toxicity detectors such as Mot yet achieved
of skifled adults Jigsaw; smart speakers
such as Siri, Alexa, or
Google Assistant; LLMs
for some tasks
Level 3: Expert Al Expert Narrow Al Expert AGI
At least 90th percentile Spelling & grammar Not yet achieved
of skifed adulls checkers such as
Grammarly, image
generaiors such as
Imagen or Dail-£ 2
Level 4: Virtuoso Al Virtuoso Marrow Al Virtueso AGI
At least 99th percentile Deep Blue, AlphaGo Mot yet achieved
of skilled adults
Level 5: Superhuman Al Superhuman Narrow Al Artificial Superintelligence (ASI)
Outperforms 100% of AlphaFold, AlphaZero, Mot yet achigved
humans StockFish

Figure 1. An example framework for comparing Al capability.
(Source: Morris et.al. 2023, reproduced with permission)

Core Al concepts are briefly defined below and an
illustration of how those concepts relate to each other is
seen in Figure 2. Widely used definitions of key Al terms
are also found in the lexicon maintained by the
Department of Defense’s Chief Digital and Artificial
Intelligence Office (CDAO). !

Expert systems seek to emulate the decisionmaking
process of a human expert using a given body of
knowledge, usually using a series of if-then rules that are
hard-coded or inferred from data. Expert systems have
been around since the 1970s. Beginning in 1985, NASA’s
Johnson Space Center developed the C Language
Integrated Production System (CLIPS) tool for developing
expert systems. '2
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Machine learning (ML) is an application of Al that is
characterized by providing systems the ability to
automatically learn and improve on the basis of data or
experience, without being explicitly programmed.
Supervised ML (or supervised learning) relies on pre-
labeled data, with the goal of identifying new data
according to the established patterns or rules.
Unsupervised ML uses unlabeled data, with the goal of
identifying patterns within the data without a priori
knowledge of the patterns. These are distinct from
reinforcement ML in which the agent’s learning is
directed to maximize a tracked “reward” metric.

Neural network refers to a method that teaches
computers to process data in a way that is inspired by the
human brain. It is a type of machine learning process that
uses interconnected nodes or neurons in a layered
structure that resembles the human brain. A neural
network creates an adaptive system that computers use to
learn from their mistakes and improve continuously.

Deep learning (DL) is a subset of machine learning that
can discover high-order features within data. DL involves
using very large neural networks, with numerous layers
and potentially billions of parameters, to automatically
discover data patterns. DL techniques are inherently
multimodal and can be easily adapted and applied to
textual, audio, and imagery data, in addition to traditional
tabular data.

Computer Vision (CV) is a field that aims to extract
information from digital images, video, and other forms of
visual input. Most modern-day CV applications leverage
DL to perform tasks such as object identification,
detection and tracking, and pixel-wise segmentation.
Common approaches include deep convolutional neural
networks and transformer-based models.

Natural language processing (NLP) sits at the
intersection of linguistics, computer science, and Al. Its
primary focus is to enable computers to recognize,
understand, and generate text and speech via statistical
and/or Al modeling. Applications in this field include (but
are not limited to) information retrieval, knowledge
representation, voice-operated systems (e.g., Amazon’s
Alexa), and digital assistants (e.g., Apple Inc.’s Siri).
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Generative Al (GenAl) is a class of Al models that
leverages deep learning to generate derived, synthetic
content in response to complex and varied prompts. '*
Such content includes text, audio, and visual data across
many different languages and subjects. Today’s high-
profile applications such as OpenAl’s ChatGPT, Meta’s
Llama, and Google’s Gemini leverage a transformer
neural network architecture (the “T” in ChatGPT). These
networks consist of hundreds of layers with billions, if not
trillions, of parameters and are commonly referred to as
large language models (LLMs). Training an LLM from
scratch requires enormous amounts of computing power,
terabytes to petabytes of data, months of time, and
millions of dollars—requirements often achievable only
by a handful of the world’s largest tech companies.
However, there exist techniques that allow a practitioner
to leverage an LLM and fine-tune it on a custom dataset
using a fraction of compute power, thus making the barrier
to entry much smaller for the ML community as a whole.

Artificial Intelligence

Machine Learning
Deep Learning
Computer
Vision

Generative Al

Language
Processing

Figure 2. Pictorial representation of relationships among basic
Al concepts.

Differentiating Al from Automation

and Autonomy

Al is often used incorrectly as a synonym for autonomy,
and both terms are often confused with automation. Al,
autonomy, and automation are three distinct concepts, and
understanding the differences between them is necessary
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in order to precisely describe the requirements—and by
extension, the design needs—of a particular mission.

Automation is an action or set of actions triggered by a
stimulus based on pre-programming, often designed to be
deployed repetitively in an unchanging environment. A
robotic arm repeating a set of actions in a factory assembly
line is an example of automation; it serves one function as
part of a broader mission. Many early space systems
included automated functions, such as the automatic
picture-transmission system used to broadcast imagery
from early weather satellites. '* '3 As reliance on both
space and technology has progressed, space operations
have grown increasingly dynamic and have revealed the
inherent limits of relying on automation alone. As a result,
there has been a shift toward incorporating more
autonomy in space systems, the difference being a
system’s capacity for increased adaptability to new stimuli
while maintaining independent operations.

Autonomy refers to a machine system capable of
operating at a certain degree of self-sufficiency from
human control in a less predictable environment. For
example, an autonomous robot can reach a target location
in an environment with obstacles by using decisionmaking
algorithms. The robot will also be able to apply the same
algorithm and successfully navigate in similar
environments with different obstacles and targets but,
without Al, it does not learn or update its logic based on
environmental input. As a result, the robot’s performance
may be degraded in the face of unanticipated
circumstances that develop over time.

For space systems, autonomy may be implemented at
different scales—subsystem, spacecraft, or constellation—

No autonomy ——"—M————

and to varying extents within the system or system of
systems. Different industries that employ autonomous
systems have defined measurement schema to describe a
system’s level of autonomy based on its dependence on
humans; while the details of these schema are unique to
each field, they span from limited implementation of
automation at the lowest level to fully autonomous
systems at the highest level. Researchers have proposed
similar schema for defining the level of autonomy of a
spacecraft. 16

Al can enable even greater self-sufficiency by identifying
and selecting the most optimal or efficient actions based
on past training without human intervention. However, as
seen in Figure 3, autonomy is not a necessary outcome of
including Al in a system or process design; for example,
Al could be employed specifically to aid humans (not
machines) in decisionmaking. !” Still, there are a growing
number of examples in which Al has been integrated into
a system for the express purpose of increasing a system’s
ability to make decisions and act without additional
human intervention in a dynamic environment. On Earth,
an example of a system utilizing Al to reach a level of
autonomy in which human control is no longer needed is a
self-driving car that can operate in complex, ever-
changing conditions within a pre-defined geographic area.
In space, an example system that integrates Al and
autonomy is a remote sensing satellite using onboard Al
models to autonomously determine which data to
downlink first when there are constraints on downlink
capacity. '® In both examples, an Al model is trained using
data from past experiences to better respond to new
situations in real time.

Full autonomy

Automation of specific functions

Al used to assist human decisionmakers

Autonomous systems without Al

Human in control (system may assist)

Al-enabled autonomous systems

System in control (human may assist)

Figure 3: A system’s autonomy shown as a continuum and how automation and Al factor in decisionmaking.
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Emerging Opportunities for Space

Al can support a space mission in every phase of its
mission lifecycle, from system design to operation and
system output analysis. Depending on the mission phase,
the primary purpose of incorporating Al may change, and
the effects can either be real-time, ongoing, or long term.
Real-time effects of Al integration can include
optimization—whether of time, resources, or quality—and
system autonomy, allowing for self-directed, local
decisionmaking onboard a satellite and improved
responses to environmental stimuli. Increased
interoperability of systems and their outputs is an example
of a possible ongoing effect of using Al in space missions,
as is assistance to humans interacting with the space
system or its processes. Assistance from Al can alleviate
human decision fatigue and help with routine tasks.
While the recent popular enthusiasm for Al is mainly
focused on GenAl technologies, the space enterprise has
incorporated the broader set of Al technologies across
different application domains. For example, government
agencies and commercial companies alike have employed
ML and DL systems for sensor data processing and
analysis to extract additional insights from the growing
amount of sensor data being produced by space systems.
Efforts are also underway to explore the value of GenAl
for augmenting human spaceflight operations. In 2024, an
LLM was deployed onboard the International Space
Station, believed to be the first time GenAl was deployed
in space. This deployment was intended to demonstrate
the feasibility of using GenAl to help astronauts solve
problems locally rather than sending back large data sets
to Earth for processing and analysis. !° The potential
contributions of Al to space can be assessed by looking at
its impact on each of the following mission areas.

Workforce Augmentation
Al tools are already used to streamline processes and

increase automation across a project workflow, from
design to operations. 2° For example, GenAl tools are
projected to assist the broader workforce with routine
tasks such as weekly reports, literature reviews, report
writing, and other common writing tasks. The full range of
Al technologies will also impact the space workforce at
various stages, from education to manufacturing, on-orbit
decisionmaking, and more. Thus, the next generation of
the nation’s workforce must be trained to use Al tools
effectively in order to increase productivity, bolster
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creativity, and keep pace with future aerospace industry
needs. Organizations intent on future-proofing are
harnessing Al tools that themselves can come up with new
ways of solving problems—for example, NASA has
demonstrated the ability of GenAl to develop innovative
designs for mission parts. 2! In terms of AI’s ability to
support on-orbit decisionmaking, it will be important to
recognize opportunities as well as potential challenges. To
that end, the U.S. Space Force is already working to
identify space processes that are well-suited for Al use, as
opposed to cases where there should always be a human-
on-the-loop to engage with an otherwise autonomous
system augmented by Al 2

Remote Sensing

Al is also already being used to analyze space-based
remote sensing data, which helps analysts identify myriad
activities of interest ranging from illegal logging in the
Amazon rainforest to military engagements in other parts
of the world. 2> 2* A review of the use of Al in remote
sensing published in 2022 showed the wide-ranging
applications of Al to the field, with a particular emphasis
on the value of convolutional neural networks to Al-
enabled remote sensing science. 2> As remote sensing data
analysis can include various technological challenges
(such as image description generation and image
generation from sequential data), Al is useful to sort
through these large data sets and quickly provide useful
information to the end user. In 2025, Jet Propulsion
Laboratory collaborated with two commercial
organizations (Ubotica and Open Cosmos) to demonstrate
combining Al and autonomy to show a proof of concept
for a look-ahead sensor acquiring data and rapidly
analyzing that data to drive subsequent observations. 26

Citizen science projects can also use remote sensing data
combined with Al systems to promote sustainability and
development around the world. Volunteer groups of
citizen scientists have gathered and labeled plant data on
the ground, which can then be combined with satellite
imagery and used to train Al models that can monitor
biodiversity in different ecosystems. 2’ Disaster
management is another area where citizen science,
remote sensing, and Al make a powerful combination.
Researchers have reduced uncertainty and improved the
data resolution of satellite images used in high-tide flood
monitoring initiatives by combining remote sensing data
with data provided by volunteers through computer-vision
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algorithms. 28 As another example, in the case of a forest
fire, remote sensing satellites may not only be able to
detect the onset of a fire but also sense characteristics that
could prompt a fire, such as the drying of forests or the
large presence of species of trees that might be more
flammable than others. Synthetic aperture radar satellites
can help measure the biomass in vegetation; the resulting
data can then help model fuel availability and map the
likely spread of a potential wildfire. Al tools can analyze
the data much more quickly than humans could unassisted,
resulting in overall improvements in fire prevention and
fire response.

Astronomy and Planetary Exploration

Civil space agencies have employed Al applications to
facilitate scientific research in astronomy and cosmology.
Al image recognition capabilities are being used to
coordinate telescopes in order to mine and analyze huge
amount of incoming astronomy data. ** For example,
discovering exoplanets—planets orbiting distant stars—
requires scientists to sift through extensive datasets of
candidate planet observations to separate true exoplanets
from false positives. To help with this process, NASA
developed a deep neural network called ExoMiner by
training the tool on the characteristics of a false positive
exoplanet observation. When applied to a catalogue of
100,000 candidate signals, ExoMiner quickly and
precisely validated 301 new exoplanets. 3

Al is also being used to help resolve space domain
challenges created by communications gaps or constraints.
NASA’s Automated Scheduling and Planning
Environment (ASPEN) tool can help translate high-level
objections into low-level commands suitable for
constrained communications environments such as deep
space probes and communications antennae. 3! Al is also
providing additional autonomy in extraterrestrial
exploration on Mars to help NASA rovers accomplish
more in less time. The Perseverance rover’s spectrometer
is using Al to autonomously determine which rocks and
mineral samples are worth examining more deeply, while
Curiosity uses Al to help it navigate without direct
instructions from Earth. 3

Space Situational Awareness/Space
Domain Awareness
Assessing the state of the space environment requires the

collection and fusion of hundreds of thousands of data
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points consisting of unintuitive, latent, biased, noisy, and
inconsistent data from many different types of sensors.
Both space situational awareness (SSA), defined as overall
awareness of the space environment, ** and its
subcomponent, space domain awareness (SDA), which is
understanding and predicting the operational environment,
34 have found Al useful for object identification, tracking,
and pattern of life characterization, even if traditional
deterministic algorithms are still the mainstay.

Researchers have focused on identifying Al techniques to
classify a satellite’s “patterns of life” at different orbital
regimes, ° typically using either supervised or
unsupervised ML. 3> 3¢ A recent example of this includes
efforts by the Defense Advanced Research Projects
Agency to develop Agatha, a tool that seeks outliers
within constellations of satellites. *” Additionally, Al can
be applied to optimize the tasking of sensors, untangling
signals from different space objects, orbit determination
propagation, and SDA catalog maintenance. 3® By
assessing historical data, Al has also been useful in
developing early warning criteria for space weather
events—a critical aspect of SDA. * One area of ongoing
work to improve the use of Al for SDA is the creation of
quality, labeled data and accurate, physics-based models
of spacecraft and their orbits. 4

Space Traffic Management
The rapid increase in the number of space objects orbiting

the Earth has prompted a growing focus on space traffic
management (STM), also known as space traffic coord-
ination (STC), which the U.S. government has defined as
planning, coordination, and on-orbit synchronization of
activities to enhance the safety, stability, and sustainability
of operations in the space environment. *' Generally, Al
has not been applied to STM.

However, as the number of satellites—in particular, large
constellations of thousands of satellites—increases, the
number of close approaches that could potentially result in
collisions grows exponentially. Satellite operators
routinely must perform conjunction assessments (CAs)
and calculate the most appropriate risk mitigation
maneuvers (RMMs) to alter a satellite’s trajectory and

2 Patterns of life describe a satellite’s usual behavior, including station
keeping maneuvers, and when well-characterized, demonstrate a
satellite’s compliance with existing standards, norms, and regulations.
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reduce the probability of a collision. Large satellite
constellations are increasingly performing autonomous
CAs and RMMs, but at the moment these techniques are
not Al-driven but are based on classic deterministic
algorithms. This is mainly due to the lack of real-world
data on which events, of the many thousands of close
approaches, would have resulted in actual collisions—
information that would be needed to train an Al model.
However, these limitations may be overcome as space
agencies and startups continue to explore the use of Al
and ML for future flight safety applications. 43

In-Space Servicing, Assembly, and Manufacturing
In-space servicing, assembly, and manufacturing (ISAM)
technologies are poised to change the satellite industry
with capabilities like satellite refueling, in-space assembly
of large structures, and in-space additive manufacturing. *4
Al technologies play an important role in advancing this
ISAM technology. For example, satellites can use onboard
cameras combined with traditional algorithms trained by
Al to perform autonomous rendezvous, proximity
operations, and docking. 4 The currently limited
computational power of onboard, radiation-hardened
electronics will likely mean algorithms are developed on
the ground using training data, fine-tuned with operational
data post-launch, and then implemented in space.
However, researchers are actively working to overcome
this onboard computation limitation. 4> 47 Additionally,
some researchers are developing Al on-orbit assembly
planning systems that overcome the need for real-time,
remote-controlled assembly from human operators,
enabling ISAM operations that are responsive to

real-time feedback. 48

Security
One area of active research is on how Al can be used to

build more effective defenses capable of detecting and
responding to threats against space systems. Research
suggests encryption enhanced by Al could preempt attacks
by scaling satellite and ground station security measures to
outpace constantly evolving threats. ** Cybersecurity
experts are also developing advanced Al-driven “intrusion
detection systems” to identify and address

vulnerabilities. >° On the responsive end, ML is being
applied to adapt signal transmission in real time to prevent
accidental interference and intentional jamming of satellite
communication links. 3! These examples span the entire
threat lifecycle but are connected by a common theme: Al
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applications can be used to boost autonomy within a
system or process, enabling faster and more optimal
decisions, and by extension, more secure space systems.

Conclusion

As the United States looks to strengthen its space
capabilities to meet new global challenges, policymakers
must look beyond just the Al label and investigate which
specific Al technologies are being employed and how. The
field of Al has been around for decades and encompasses
a broad range of techniques, each with its own unique
advantages and requirements. For greater effect, the space
community needs to refrain from speaking in generalities
about “using AI” but rather specify which Al technology
is being used and what particular problem the Al is
addressing. Doing so can avoid wasting taxpayer dollars
chasing marketing hype and going down fruitless

dead ends.

This paper also illustrates how Al tools and processing
techniques can offer advantages across multiple space
missions, but those advantages have been uneven. Of the
areas examined here, remote sensing demonstrates the
widest current adoption of Al tools, along with NASA’s
emerging use of Al for astronomy and planetary
exploration. The common thread among the two areas is
that they both involve analyzing large amounts of complex
data, a critical requirement for training effective Al
algorithms and a class of problems that Al techniques are
well-suited to analyzing. The potential for Al in workforce
augmentation certainly shows promise as it crosscuts
many sectors of industry. For example, for space traffic
management and SSA/SDA, Al could scale our ability to
monitor, coordinate, and predict the trajectory of objects in
orbit to meet future demand. Al technology could also
help realize the economic benefits from future ISAM
capabilities that unlock sustainable economic development
in space. Finally, the threat environment in space is
evolving at a rate that will necessitate the use of Al for
enhanced security. However, multiple barriers to adoption
exist from a cultural and knowledge sharing basis, as well
as continuity of operations and services.

Maintaining U.S. leadership in space and in the services
space provides will require continued investment in and
development and deployment of effective Al solutions, as
well as seeking new opportunities to leverage Al to help
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maintain that advantage. Researchers have found that the
choices countries make in how they adopt and use new
technologies matters much more than the technologies
themselves. > To this effect, future research must tease out
how to test, verify, and build trust in systems that use Al.
Analysis is needed to understand the risks of integrating
Al into space operations and the extent to when humans-
on-the-loop will still be needed. Ultimately,
decisionmakers will need to take all of this information
into account in deciding how to shape Al governance to
maximize its potential and minimize the risks. The
foundation for approaching these open questions is built
on Al literacy, and this paper introduces the important
considerations for Al’s current and future impact on the
space industry.
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